Everything Atom feed

Showing 1 to 25 of 451 items (0.036 seconds)

Results

application/x-fascinator-package Data from: Aptamer-controlled reversible inhibition of gold nanozyme activity for pesticide sensing

Tags:

Attached file provides supplementary data for linked article. This study addresses the need for rapid pesticide (acetamiprid) detection by reporting a new colorimetric biosensing assay. Our approach combines the inherent peroxidase-like nanozyme activity of gold nanoparticles (GNPs) with high affinity and specificity of an acetamiprid-specific S-18 aptamer to detect this neurotoxic pesticide in a highly rapid, specific, and sensitive manner. It is shown that the nanozyme activity of GNPs can be inhibited by its surface passivation with targetspecific aptamer molecules. Similar to an enzymatic competitive inhibition process, in the presence of a cognate target, these aptamer molecules leave the GNP surface in a target concentration-dependent manner, reactivating GNP nanozyme activity. This reversible inhibition of the GNP nanozyme activity can either be directly visualized in the form of color change of the peroxidase reaction product or can be quantified using UV-visible absorbance spectroscopy. This approach allowed detection of 0.1 ppm acetamiprid within an assay time of 10 min. This reversible nanozyme activation/inhibition strategy may in principle be universally applicable for the detection of a range of environmental or biomedical molecules of interest. 

application/x-fascinator-package Data from: Mimicry of Sputtered i-ZnO Thin Films Using Chemical Bath Deposition for Solution-Processed Solar Cells

Tags:

Attached file provides supplementary data for linked article. Solution processing provides a versatile and inexpensive means to prepare functional materials with specifically designed properties. The current challenge is to mimic the structural, optical, and/or chemical properties of thin films fabricated by vacuum-based techniques using solution-based approaches. In this work we focus on ZnO to show that thin films grown using a simple, aqueous-based, chemical bath deposition (CBD) method can mimic the properties of sputtered coatings, provided that the kinetic and thermodynamic reaction parameters are carefully tuned. The role of these parameters toward growing highly oriented and dense ZnO thin films is fully elucidated through detailed microscopic and spectroscopic investigations. The prepared samples exhibit bulk-like optical properties, are intrinsic in their electronic characteristics, and possess negligible organic contaminants, especially when compared to ZnO layers deposited by sol-gel or from nanocrystal inks. The efficacy of our CBD-grown ZnO thin films is demonstrated through the effective replacement of sputtered ZnO buffer layers within high efficiency solution processed Cu2ZnSnS4xSe4(1-x) solar cells. 

application/x-fascinator-package Data from: Metallophilic Contacts in 2‑C6F4PPh2 Bridged Heterobinuclear Complexes: A Crystallographic and Computational Study

Tags:

Attached file provides supplementary data for linked article. Treatment of the bis(chelate) complex trans-[Pd(kappa(2)-2-C6F4PPh2)2] (7) with PMe3 gave trans-[Pd(kappaC-2-C6F4PPh2)2(PMe3)2] (13) as a mixture of syn- and anti-isomers. Reaction of 13 with CuCl, AgCl, or [AuCl(tht)] (tht = tetrahydrothiophene) gave the heterobinuclear complexes [(Me3P)2Pd(mu-2-C6F4PPh2)2MCl] [M = Cu (14), Ag (15), Au (16)], from which the corresponding salts [(Me3P)2Pd(mu-2-C6F4PPh2)2M]PF6 [M = Cu (17), Ag (18), Au (19)] could be prepared by abstraction of the chloro ligand with TlPF6; 18, as well as its triflato (20) and trifluoroacetato (21) analogues, were also prepared directly from 13 and the appropriate silver salt. Reaction of 13 with [AuCl(PMe3)] gave the zwitterionic complex [(Me3P)PdCl(mu-2-C6F4PPh2)2Au] (24) in which the 2-C6F4PPh2 ligands are in a head-to-head arrangement. In contrast, the analogous reaction with [AuCl(PPh3)] gave [(Ph3P)PdCl(mu-2-C6F4PPh2)2Au] (25) with a head-to-tail ligand arrangement. Single crystal X-ray diffraction studies of complexes 14-21 show short metal-metal separations [2.7707(11)-2.9423(3) A] suggestive of attractive noncovalent (dispersion) interactions, a conclusion that is supported by theoretical calculations of the electron localization function and the noncovalent interactions descriptor. 

application/x-fascinator-package Data from: CO2 adsorption in azobenzene functionalized stimuli responsive metal-organic frameworks

Tags:

Attached file provides supplementary data for linked article. Recent reports of externally triggered, controlled adsorption of carbon dioxide (CO2) have raised the prospects of using stimuli responsive metal organic frameworks (MOFs) for energy efficient gas storage and release. Motivated by these reports, here we investigate CO2 adsorption mechanisms in photoresponsive PCN-123 and azo-IRMOF-10 frameworks. Using a combination of grand canonical Monte Carlo and first-principles quantum mechanical simulations, we find that the CO2 adsorption in both frameworks is substantially reduced upon light-induced isomerization of azobenzene, which is in agreement with the experimental measurements. We show that the observed behavior originates from inherently weaker interactions of CO2 molecules with the frameworks when azobenzene groups are in cis state rather than due to any steric effects that dramatically alter the adsorption configurations. Our studies suggest that even small changes in local environment triggered by external stimuli can provide a control over the stimuli responsive gas adsorption and release in MOFs. 

application/x-fascinator-package Workflow Step Data from: Quadrupolar (A-pi-D-pi-A) Tetra-aryl 1,4-Dihydropyrrolo[3,2-b]pyrroles as single molecular resistive memory devices: substituent triggered amphoteric redox performance and electrical bistability

Tags:

Attached file provides supplementary data for linked article. A series of quadrupolar (A-π-D-π-A) tetra-aryl 1,4-dihydropyrrolo[3,2-b]pyrrole (DHPP) derivatives synthesized are showcased as potential organic resistive memory (ORM) devices for the first time. The experimental observations coupled with density functional theory (DFT) calculations probe in detail the role of terminal substituent groups (p-NH2, p-Cl, p-CN, p-NO2, m-NO2) on the optical and electrical properties. Electrochemical studies reveal that the 3- and 4-dinitro derivatives form an unusual class of tetra-aryl DHPPs that exhibit intrinsic amphoteric redox behavior contrary to the literature reports. The bipolar nature within a single molecule was harnessed to design operational ORMs. Interestingly, the memory devices fabricated using the structural isomers exhibited dissimilar memory characteristics. While the p-NO2 derivative displays permanent Write Once Read Many times (WORM) memory, its meta-counterpart represents a behavior akin to rewriteable flash memory. The noticeably higher ON/OFF ratio (∼104) for the p-NO2 derivatives could be ascribed to their matched redox energy levels with the work function of active electrodes favoring better charge injection. Rational interpretation of these findings strongly suggests that the choice and strategic positioning of terminal substituents can significantly alter the nature of "charge traps" affecting the device outcome. These encouraging findings open up a relatively less chartered territory of air stable fused pyrrole systems that holds great promise for realizing next generation organic memory devices. 

application/x-fascinator-package Data from: Time-Domain THz Spectroscopy Reveals Coupled Protein–Hydration Dielectric Response in Solutions of Native and Fibrils of Human Lysozyme

Tags:

Attached file provides supplementary data for linked article. Here we reveal details of the interaction between human lysozyme proteins, both native and fibrils, and their water environment by intense terahertz time domain spectroscopy. With the aid of a rigorous dielectric model, we determine the amplitude and phase of the oscillating dipole induced by the THz field in the volume containing the protein and its hydration water. At low concentrations, the amplitude of this induced dipolar response decreases with increasing concentration. Beyond a certain threshold, marking the onset of the interactions between the extended hydration shells, the amplitude remains fixed but the phase of the induced dipolar response, which is initially in phase with the applied THz field, begins to change. The changes observed in the THz response reveal protein-protein interactions mediated by extended hydration layers, which may control fibril formation and may have an important role in chemical recognition phenomena. 

application/x-fascinator-package Data from: Revitalizing the Frens Method To Synthesize Uniform, Quasi-Spherical Gold Nanoparticles with Deliberately Regulated Sizes from 2 to 330 nm

Tags:

Attached file provides supplementary data for linked article. In this work, we have successfully developed a new and consistent model to describe the growth of gold nanoparticles (Au NPs) via citrate reduction of auric acid (HAuCl4) by carefully assessing the temporal evolution of the NP sizes and surface charges by means of dynamic light scattering (DLS) and zeta-potential measurements. The new model demonstrates that the nucleation and growth of the Au NPs occur exclusively in the particles of the complexes of Au+ ions and sodium acetone dicarboxylate (SAD) derived from the citrate/HAuCl4 redox reaction, which proceeds as described by the classic LaMer model. Concomitant with the Au NP growing therein, the Au+/SAD complex particles undergo reversible agglomeration with the reaction time, which may result in an abnormal color change of the reaction media but have little impact on the Au NP growth. Built on the new model, we have successfully produced monodisperse quasi-spherical Au NPs with sizes precisely regulated from 2 to 330 nm via simple citrate reduction in a one-pot manner. To date, highly uniform Au NPs with sizes spanning such a large size range could not be formed otherwise even via deliberately controlled seeded growth methods. 

application/x-fascinator-package Data from: Semiconductor quantum dot sensitized solar cells based on Ferricyanide/Ferrocyanide redox electrolyte reaching an open circuit photovoltage of 0.8 v

Tags:

Attached file provides supplementary data for linked article. Semiconductor quantum dot sensitized solar cells (QDSSCs) have rapidly been developed, and their efficiency has recently exceeded 9%. Their performances have mainly been achieved by focusing on improving short circuit photocurrent employing polysulfide electrolytes. However, the increase of open circuit photovoltage (VOC) cannot be expected with QDSSCs based on the polysulfide electrolytes owing to their relatively negative redox potential (around -0.65 V vs Ag/AgCl). Here, we demonstrate enhancement of the open circuit voltage by employing an alternative electrolyte, ferricyanide/ferrocyanide redox couple. The solar cell performance was optimized by investigating the influence of ferricyanide and ferrocyanide concentration on their interfacial charge transfer and transport kinetics. The optimized ferricyanide/ferrocyanide species concentrations (0.01/0.2 M) result in solar energy conversion efficiency of 2% with VOC of 0.8 V. Since the potential difference between the TiO2 conduction band edge at pH 7 and the electrolyte redox potential is about 0.79 V, although the conduction band edge shifts negatively under the negative bias application into the TiO2 electrode, the solar cell with the optimized electrolyte composition has nearly reached the theoretical maximum voltage. This study suggests a promising method to optimize an electrolyte composition for maximizing solar energy conversion efficiency. 

application/x-fascinator-package Data from: Phosphoric acid loaded azo (-N=N-) based covalent organic framework for proton conduction

Tags:

Attached file provides supplementary data for linked article. Two new chemically stable functional crystalline covalent organic frameworkds (COFs) (Tp-Azo and Tp-Stb) were synthesized using the Schiff base reaction between triformylphloroglucinol (Tp) and 4,4-azodianiline (Azo) or 4,4-diaminostilbene (Stb), respectively. Both COFs show the expected keto-enamine form, and high stability toward boiling water, strong acidic, and basic media. H3PO4 doping in Tp-Azo leads to immobilization of the acid within the porous framework, which facilitates proton conduction in both the hydrous (O= 9.9 × 10-4 S cm -1) and anhydrous state (O= 6.7 × 10-5 S cm -1). This report constitutes the first emergence of COFs as proton conducting materials. 

application/x-fascinator-package Data from: Competitive Inhibition of the Enzyme-Mimic Activity of Gd-Based Nanorods toward Highly Specific Colorimetric Sensing of l‑Cysteine

Tags:

Attached file provides supplementary data for linked article. Gd-based nanomaterials offer interesting magnetic properties and have been heavily investigated for magnetic resonance imaging. The applicability of these materials beyond biomedical imaging remains limited. The current study explores the applicability of these rare-earth nanomaterials as nanozyme-mediated catalysts for colorimetric sensing of l-cysteine, an amino acid of high biomedical relevance. We show a facile solution-based strategy to synthesize two Gd-based nanomaterials viz. Gd(OH)3 and Gd2O3 nanorods. We further establish the catalytic peroxidase-mimic nanozyme activity of these Gd(OH)3 and Gd2O3 nanorods. This catalytic activity was suppressed specifically in the presence of l-cysteine that allowed us to develop a colorimetric sensor to detect this biologically relevant molecule among various other contaminants. This suppression, which could either be caused due to catalyst poisoning or enzyme inhibition, prompted extensive investigation of the kinetics of this catalytic inhibition in the presence of cysteine. This revealed a competitive inhibition process, a mechanism akin to those observed in natural enzymes, bringing nanozymes a step closer to the biological systems. 

application/x-fascinator-package Data from: HIV integration and the establishment of latency in CCL19-treated resting CD4+ T cells require activation of NF-κB

Tags:

Attached file provides supplementary data for linked article. Background Eradication of HIV cannot be achieved with combination antiretroviral therapy (cART) because of the persistence of long-lived latently infected resting memory CD4+ T cells. We previously reported that HIV latency could be established in resting CD4+ T cells in the presence of the chemokine CCL19. To define how CCL19 facilitated the establishment of latent HIV infection, the role of chemokine receptor signalling was explored. Results In resting CD4+ T cells, CCL19 induced phosphorylation of RAC-alpha serine/threonine-protein kinase (Akt), nuclear factor kappa B (NF-κB), extracellular-signal-regulated kinase (ERK) and p38. Inhibition of the phosphoinositol-3-kinase (PI3K) and Ras/Raf/Mitogen-activated protein kinase/ERK kinase (MEK)/ERK signalling pathways inhibited HIV integration, without significant reduction in HIV nuclear entry (measured by Alu-LTR and 2-LTR circle qPCR respectively). Inhibiting activation of MEK1/ERK1/2, c-Jun N-terminal kinase (JNK), activating protein-1 (AP-1) and NF-κB, but not p38, also inhibited HIV integration. We also show that HIV integrases interact with Pin1 in CCL19-treated CD4+ T cells and inhibition of JNK markedly reduced this interaction, suggesting that CCL19 treatment provided sufficient signals to protect HIV integrase from degradation via the proteasome pathway. Infection of CCL19-treated resting CD4+ T cells with mutant strains of HIV, lacking NF-κB binding sites in the HIV long terminal repeat (LTR) compared to infection with wild type virus, led to a significant reduction in integration by up to 40-fold (range 1–115.4, p = 0.03). This was in contrast to only a modest reduction of 5-fold (range 1.7–11, p > 0.05) in fully activated CD4+ T cells infected with the same mutants. Finally, we demonstrated significant differences in integration sites following HIV infection of unactivated, CCL19-treated, and fully activated CD4+ T cells. Conclusions HIV integration in CCL19-treated resting CD4+ T cells depends on NF-κB signalling and increases the stability of HIV integrase, which allow subsequent integration and establishment of latency. These findings have implications for strategies needed to prevent the establishment, and potentially reverse, latent infection. 

application/x-fascinator-package Data from: Polar Pore Surface Guided Selective CO2 Adsorption in a Prefunctionalized Metal–Organic Framework

Tags:

Attached file provides supplementary data for linked article. Selective CO2 adsorption over other small gases has been realized in an ultra-microporous metal-organic framework (MOF). In the quest of manifesting such selective carbon capture performance, the prefunctionalized linker strategy has been espoused. A new Zn(II)-based three-dimensional, 3-fold interpenetrated metal-organic framework material [Zn(PBDA)(DPNI)]n·xG (PBDA: 4,4′-((2-(tert-butyl)-1,4-phenylene)bis(oxy))dibenzoic acid; DPNI: N,N′-di(4-pyridyl)-1,4,5,8-naphthalenetetracarboxydiimide; xG: x number of guest species) with unusual rob topology is synthesized following a typical solvothermal synthesis protocol, which gleans a modest CO2-selective adsorption trend over its congener gases (saturation CO2 uptake capacity: 2.39 and 3.44 mmol g-1, at 298 and 273 K; volumetric single component isotherm based separation ratios at 0.2 bar: 189.4 (CO2/N2, 256.5 (CO2/H2), 12.3 (CO2/CH4); at 1 bar: 6.8 (CO2/N2, 17.1 (CO2/H2), 7.1 (CO2/CH4)). The compound also exhibits selective benzene sorption over its aliphatic C6-analogue cyclohexane. The structure-property correlation guided results supported by theoretical introspection further emphasize the omnipresent role of crystal engineering principles behind culmination of such targeted properties in the nanoporous MOF domain, to realize selective sorption facets. 

application/x-fascinator-package Data from: Quadrupolar (A-pi-D-pi-A) Tetra-aryl 1,4-Dihydropyrrolo[3,2-b]pyrroles as single molecular resistive memory devices: substituent triggered amphoteric redox performance and electrical bistability

Tags:

Attached file provides supplementary data for linked article. A series of quadrupolar (A-π-D-π-A) tetra-aryl 1,4-dihydropyrrolo[3,2-b]pyrrole (DHPP) derivatives synthesized are showcased as potential organic resistive memory (ORM) devices for the first time. The experimental observations coupled with density functional theory (DFT) calculations probe in detail the role of terminal substituent groups (p-NH2, p-Cl, p-CN, p-NO2, m-NO2) on the optical and electrical properties. Electrochemical studies reveal that the 3- and 4-dinitro derivatives form an unusual class of tetra-aryl DHPPs that exhibit intrinsic amphoteric redox behavior contrary to the literature reports. The bipolar nature within a single molecule was harnessed to design operational ORMs. Interestingly, the memory devices fabricated using the structural isomers exhibited dissimilar memory characteristics. While the p-NO2 derivative displays permanent Write Once Read Many times (WORM) memory, its meta-counterpart represents a behavior akin to rewriteable flash memory. The noticeably higher ON/OFF ratio (∼104) for the p-NO2 derivatives could be ascribed to their matched redox energy levels with the work function of active electrodes favoring better charge injection. Rational interpretation of these findings strongly suggests that the choice and strategic positioning of terminal substituents can significantly alter the nature of "charge traps" affecting the device outcome. These encouraging findings open up a relatively less chartered territory of air stable fused pyrrole systems that holds great promise for realizing next generation organic memory devices. 

application/x-fascinator-package Data from: Facet-Dependent Interactions of Islet Amyloid Polypeptide with Gold Nanoparticles: Implications for Fibril Formation and Peptide-Induced Lipid Membrane Disruption

Tags:

Attached file provides supplementary data for linked article. A comprehensive understanding of the mechanisms of interaction between proteins or peptides and nanomaterials is crucial for the development of nanomaterial-based diagnostics and therapeutics. In this work, we systematically explored the interactions between citrate-capped gold nanoparticles (AuNPs) and islet amyloid polypeptide (IAPP), a 37-amino acid peptide hormone co-secreted with insulin from the pancreatic islet. We utilized diffusion-ordered spectroscopy, isothermal titration calorimetry, localized surface plasmon resonance spectroscopy, gel electrophoresis, atomic force microscopy, transmission electron microscopy (TEM), and molecular dynamics (MD) simulations to systematically elucidate the underlying mechanism of the IAPP-AuNP interactions. Because of the presence of a metal-binding sequence motif in the hydrophilic peptide domain, IAPP strongly interacts with the Au surface in both the monomeric and fibrillar states. Circular dichroism showed that AuNPs triggered the IAPP conformational transition from random coil to ordered structures (α-helix and β-sheet), and TEM imaging suggested the acceleration of IAPP fibrillation in the presence of AuNPs. MD simulations revealed that the IAPP-AuNP interactions were initiated by the N-terminal domain (IAPP residues 1-19), which subsequently induced a facet-dependent conformational change in IAPP. On a Au(111) surface, IAPP was unfolded and adsorbed directly onto the Au surface, while for the Au(100) surface, it interacted predominantly with the citrate adlayer and retained some helical conformation. The observed affinity of AuNPs for IAPP was further applied to reduce the level of peptide-induced lipid membrane disruption. 

application/x-fascinator-package Data from: Influence of Rare Earth (La, Pr, Nd, Gd, and Sm) Metals on the Methane Decomposition Activity of Ni–Al Catalysts

Tags:

Attached file provides supplementary data for linked article. Rare earth (RE = La, Pr, Nd, Gd and Sm) metal-doped Ni-Al (Ni-RE-Al) hydrotalcite precursors were obtained by coprecipitation and calcined to form mixed oxide catalysts. The physicochemical characteristics of calcined and reduced Ni-RE-Al samples were determined by X-ray powder diffraction, Brunauer-Emmett-Teller surface area, H-2 temperature-programmed reduction, O-2 pulse chemisorption, UV-diffuse reflectance spectroscopy, electron spin resonance spectrometry, and Fourier transform infrared spectroscopy. The catalysts were evaluated for CH4 decomposition at 550 degrees C until their complete deactivation. The deactivated catalysts were examined by transmission electron, scanning electron, and Raman spectroscopy and elemental analysis. The Raman spectra indicated the presence of both ordered and disordered carbon in deactivated catalysts. A correlation is drawn between H-2 production rates and the Ni metal surface area of catalysts. The addition of La to Ni-Al dramatically changed the Ni behavior, leading to higher H-2 yields. 

application/x-fascinator-package Data from: Double-Walled Microparticles-Embedded Self-Cross-Linked, Injectable, and Antibacterial Hydrogel for Controlled and Sustained Release of Chemotherapeutic Agents

Tags:

Attached file provides supplementary data for linked article. First-line cancer chemotherapy has been prescribed for patients suffered from cancers for many years. However, conventional chemotherapy provides a high parenteral dosage of anticancer drugs over a short period, which may cause serious toxicities and detrimental side effects in healthy tissues. Tins study aims to develop a new drug delivery system (DDS) composed of double-walled micro particles and an injectable hydrogel for localized dual-agent drug delivery to tumors. The uniform double-walled micro particles loaded with cisplatin (Cis-DDP) and paclitaxel (PTX) were fabricated via coaxial electrohydrodynamic atomization (CEHDA) technique and subsequently were embedded into injectable alginate-branched polyethylenimine. The findings show the uniqueness of CEHDA technique for simply swapping the place of drugs to achieve a parallel or a sequential release profile. This study also presents the simulation of CEHDA technique using computational fluid dynamics (CFD) that will help in the optimization of CEHDA's Operating conditions prior to large-scale production of microparticles. The new synthetic hydrogel provides an additional diffusion barrier against Cis-DDP and confines premature release of drugs. In addition, the hydrogel can provide a versatile tool for retaining particles in the tumor resected cavity during the injection after debulking surgery and preventing surgical site infection due to its inherent antibacterial properties. Three-dimensional MDA-MB-231 (breast cancer) spheroid studies demonstrate a superior efficacy and a greater reduction in spheroid growth for drugs released from the proposed composite formulation over a prolonged period, as compared with free drug treatment. Overall, the new core shell microparticles embedded into injectable hydrogel can serve as a flexible controlled release platform for modulating the release profiles of anticancer drugs and subsequently providing a superior anticancer response. 

application/x-fascinator-package Data from: Exfoliation of Quasi-Stratified Bi2S3 Crystals into Micron-Scale Ultrathin Corrugated Nanosheets

Tags:

Attached file provides supplementary data for linked article. There is ongoing interest in exploring new two-dimensional materials and exploiting their functionalities. Here, a top-down approach is used for developing a new morphology of ultrathin nanosheets from highly ordered bismuth sulfide crystals. The efficient chemical delamination method exfoliates the bulk powder into a suspension of corrugated ultrathin sheets, despite the fact that the Bi2S3 fundamental layers are made of atomically thin ribbons that are held together by van der Waals forces in two dimensions. Morphological analyses show that the produced corrugated sheets are as thin as 2.5 nm and can be as large as 20 mu m across. Determined atomic ratios indicate that the exfoliation process introduces sulfur vacancies into the sheets, with a resulting stoichiometry of Bi2S2.6. It is hypothesized that the nanoribbons were cross-linked during the reduction process leading to corrugated sheet formation. The material is used for preparing field effect devices and was found to be highly p-doped, which is attributed to the substoichiometry. These devices show a near-linear response to the elevation of temperature. The devices demonstrate selective and relatively fast response to NO2 gas when tested as gas sensors. This is the first report showing the possibility of exfoliating planar morphologies of metal chalcogenide compounds such as orthorhombic Bi2S3, even if their stratified crystal structures constitute van der Waals forces within the fundamental planes. 

application/x-fascinator-package Data from: Serum Amyloid A Induces Toll-Like Receptor 2-Dependent Inflammatory Cytokine Expression and Atrophy in C2C12 Skeletal Muscle Myotubes

Tags:

Attached file provides supplementary data for linked article. Skeletal muscle wasting is an important comorbidity of Chronic Obstructive Pulmonary Disease (COPD) and is strongly correlated with morbidity and mortality. Patients who experience frequent acute exacerbations of COPD (AECOPD) have more severe muscle wasting and reduced recovery of muscle mass and function after each exacerbation. Serum levels of the pro-inflammatory acute phase protein Serum Amyloid A (SAA) can rise more than 1000-fold in AECOPD and are predictively correlated with exacerbation severity. The direct effects of SAA on skeletal muscle are poorly understood. Here we have examined SAA effects on pro-inflammatory cachectic cytokine expression (IL-6 and TNFα) and atrophy in C2C12 myotubes. SAA increased IL-6 (31-fold) and TNFα (6.5-fold) mRNA levels compared to control untreated cells after 3h of SAA treatment, and increased secreted IL-6 protein at 24h. OxPAPC, a dual TLR2 and TLR4 inhibitor, reduced the response to SAA by approximately 84% compared to SAA alone, and the TLR2 neutralising antibody T2.5 abolished SAA-induced expression of IL-6, indicating that SAA signalling in C2C12 myotubes is primarily via TLR2. SAA also reduced myotube width by 10–13% and induced a 2.5-fold increase in the expression of the muscle atrophy gene Atrogin-1, suggesting direct effects of SAA on muscle wasting. Blocking of TLR2 inhibited the SAA-induced decrease in myotube width and Atrogin-1 gene expression, indicating that SAA induces atrophy through TLR2. These data demonstrate that SAA stimulates a robust pro-inflammatory response in skeletal muscle myotubes via the TLR2-dependent release of IL-6 and TNFα. Furthermore, the observed atrophy effects indicate that SAA could also be directly contributing to the wasting and poor recovery of muscle mass. Therapeutic strategies targeting this SAA-TLR2 axis may therefore ameliorate muscle wasting in AECOPD and a range of other inflammatory conditions associated with loss of muscle mass. 

application/x-fascinator-package Data from: Chronic activation of PPARα with fenofibrate reduces autophagic proteins in the liver of mice independent of FGF21

Tags:

Attached file provides supplementary data for linked article. Autophagy is a catabolic mechanism to degrade cellular components to maintain cellular energy levels during starvation, a condition where PPARα may be activated. Here we report a reduced autophagic capacity in the liver following chronic activation of PPARα with fenofibrate (FB) in mice. Chronic administration of the PPARα agonist FB substantially reduced the levels of multiple autophagy proteins in the liver (Atg3, Agt4B, Atg5, Atg7 and beclin 1) which were associated with a decrease in the light chain LC3II/LC3I ratio and the accumulation of p62. This was concomitant with an increase in the expression of lipogenic proteins mSREBP1c, ACC, FAS and SCD1. These effects of FB were completely abolished in PPARα-/- mice but remained intact in mice with global deletion of FGF21, a key downstream mediator for PPARα-induced effects. Further studies showed that decreased the content of autophagy proteins by FB was associated with a significant reduction in the level of FoxO1, a transcriptional regulator of autophagic proteins, which occurred independently of both mTOR and Akt. These findings suggest that chronic stimulation of PPARα may suppress the autophagy capacity in the liver as a result of reduced content of a number of autophagyassociated proteins independent of FGF21. 

application/x-fascinator-package Data from: Electron, hole, singlet, and triplet energy transfer in photoexcited porphyrin-naphthalenediimide dyads

Tags:

Attached file provides supplementary data for linked article. The excited-state dynamics of two molecular dyads, consisting of zinc (1) and free-base (2) porphyrin connected via a peptide linker to a core-substituted naphthalenediimide (NDI) have been investigated using optical spectroscopy. These dyads exhibit rich photophysics because of the large number of electronic excited states below 3 eV. In the case of 1 in apolar solvents, excitation energy transfer from the vibrationally hot singlet excited porphyrin to the NDI takes place with a 500 fs time constant. Electronic energy ends up in the NDI-localized triplet state, which decays to the ground state on a microsecond timescale. In polar solvents, ground-state recovery is faster by 5 orders of magnitude because of the occurrence of charge separation followed by recombination. On the other hand, excitation energy transfer in 2 takes place in the opposite direction, namely from the NDI to the porphyrin, which then undergoes intersystem crossing to the triplet state, followed by triplet energy transfer back to the NDI. Therefore, four distinct local electronic excited states are consecutively populated after excitation of the NDI unit of 2, with the energy shuttling between the two ends of the dyad. 

application/x-fascinator-package Data from: Cleaning of Oil Fouling with Water Enabled by Zwitterionic Polyelectrolyte Coatings: Overcoming the Imperative Challenge of Oil–Water Separation Membranes

Tags:

Attached files provides supplementary data for linked article - the files includes five videos and a PDF containing further figures and data. The article details a self-cleaning coating derived from zwitterionic poly(2-methacryloyloxylethyl phosphorylcholine) (PMPC) brushes grafted on a solid substrate. The PMPC surface not only exhibits complete oil repellency in a water-wetted state (i.e., underwater superoleophobicity), but also allows effective cleaning of oil fouled on dry surfaces by water alone. The PMPC surface was compared with typical underwater superoleophobic surfaces realized with the aid of surface roughening by applying hydrophilic nanostructures and those realized by applying smooth hydrophilic polyelectrolyte multilayers. We show that underwater superoleophobicity of a surface is not sufficient to enable water to clean up oil fouling on a dry surface, because the latter circumstance demands the surface to be able to strongly bond water not only in its pristine state but also in an oil-wetted state. The PMPC surface is unique with its described self-cleaning performance because the zwitterionic phosphorylcholine groups exhibit exceptional binding affinity to water even when they are already wetted by oil. Further, we show that applying this PMPC coating onto steel meshes produces oil–water separation membranes that are resilient to oil contamination with simply water rinsing. Consequently, we provide an effective solution to the oil contamination issue on the oil–water separation membranes, which is an imperative challenge in this field. Thanks to the self-cleaning effect of the PMPC surface, PMPC-coated steel meshes can not only separate oil from oil–water mixtures in a water-wetted state, but also can lift oil out from oil–water mixtures even in a dry state, which is a very promising technology for practical oil-spill remediation. In contrast, we show that oil contamination on conventional hydrophilic oil–water separation membranes would permanently induce the loss of oil–water separation function, and thus they have to be always used in a completely water-wetted state, which significantly restricts their application in practice. 

application/x-fascinator-package Data from: Functional Significance of Labellum Pattern Variation in a Sexually Deceptive Orchid (Ophrys heldreichii): Evidence of Individual Signature Learning Effects

Tags:

Attached file provides supplementary data for linked article. Mimicking female insects to attract male pollinators is an important strategy in sexually deceptive orchids of the genus Ophrys, and some species possess flowers with conspicuous labellum patterns. The function of the variation of the patterns remains unresolved, with suggestions that these enhance pollinator communication. We investigated the possible function of the labellum pattern in Ophrys heldreichii, an orchid species in which the conspicuous and complex labellum pattern contrasts with a dark background. The orchid is pollinated exclusively by males of the solitary bee, Eucera berlandi. Comparisons of labellum patterns revealed that patterns within inflorescences are more similar than those of other conspecific plants. Field observations showed that the males approach at a great speed and directly land on flowers, but after an unsuccessful copulation attempt, bees hover close and visually scan the labellum pattern for up to a minute. Learning experiments conducted with honeybees as an accessible model of bee vision demonstrated that labellum patterns of different plants can be reliably learnt; in contrast, patterns of flowers from the same inflorescence could not be discriminated. These results support the hypothesis that variable labellum patterns in O. heldreichii are involved in flower-pollinator communication which would likely help these plants to avoid geitonogamy. 

application/x-fascinator-package Supporting information for Plasmon Resonances of Highly Doped Two-Dimensional MoS2

Tags:

This is supplementary data for the published paper on Nano Letters. The exhibition of plasmon resonances in two-dimensional (2D) semiconductor compounds is desirable for many applications. Here, by electrochemically intercalating lithium into 2D molybdenum disulfide (MoS2) nanoflakes, plasmon resonances in the visible and near UV wavelength ranges are achieved. These plasmon resonances are controlled by the high doping level of the nanoflakes after the intercalation, producing two distinct resonance peak areas based on the crystal arrangements. The system is also benchmarked for biosensing using bovine serum albumin. This work provides a foundation for developing future 2D MoS2 based biological and optical units 

application/x-fascinator-package Data from: Fine-Tuning the Antimicrobial Profile of Biocompatible Gold Nanoparticles by Sequential Surface Functionalization Using Polyoxometalates and Lysine

Tags:

Attached file provides supplementary data for linked article. Antimicrobial action of nanomaterials is typically assigned to the nanomaterial composition, size and/or shape, whereas influence of complex corona stabilizing the nanoparticle surface is often neglected. We demonstrate sequential surface functionalization of tyrosine-reduced gold nanoparticles (AuNPsTyr) with polyoxometalates (POMs) and lysine to explore controlled chemical functionality-driven antimicrobial activity. Our investigations reveal that highly biocompatible gold nanoparticles can be tuned to be a strong antibacterial agent by fine-tuning their surface properties in a controllable manner. The observation from the antimicrobial studies on a gram negative bacterium Escherichia coli were further validated by investigating the anticancer properties of these step-wise surface-controlled materials against A549 human lung carcinoma cells, which showed a similar toxicity pattern. These studies highlight that the nanomaterial toxicity and biological applicability are strongly governed by their surface corona.  

application/x-fascinator-package Data from: Tetraphenylethene-Based Star Shaped Porphyrins: Synthesis, Self-assembly, and Optical and Photophysical Study

Tags:

Attached file provides supplementary data for linked article. Supramolecular self-assembly and self-organization are simple and convenient ways to design and create controlled assemblies with organic molecules, and they have provoked great interest due to their potential applications in various fields, such as electronics, photonics, and light-energy conversion. Herein, we describe the synthesis of two π-conjugated porphyrin molecules bearing tetraphenylethene moieties with high fluorescence quantum yield. Photophysical and electrochemical studies were conducted to understand the physical and redox properties of these new materials, respectively. Furthermore, these derivatives were used to investigate self-assembly via the solvophobic effect. The self-assembled aggregation was performed in nonpolar and polar organic solvents and forms nanospheres and ring-like nanostructures, respectively. The solution based aggregation was studied by means of UV-vis absorption, emission, XRD, and DLS analyses. Self-assembled ring-shape structures were visualized by SEM and TEM imaging. This ring-shape morphology of nanosized macromolecules might be a good candidate for the creation of artificial light-harvesting nanodevices.